Advanced Search

Stem-end rot (SER) is a serious postharvest disease of mango fruit grown in semi-dry area. Pathogenic and non-pathogenic microorganisms endophytically colonize fruit stem-end. As fruit ripens, some pathogenic fungi switch from endophytic colonization to necrotrophic stage and cause SER. Various pre/post-treatments may alter the stem-end community and modify SER incidence. This study investigates the effects of harvesting mango with or without short stem-end on fruit antifungal and antioxidant activities, the endophytic microbiome, and SER during fruit storage. Our results show that harvesting mango with short stem significantly reduced SER during storage. At harvest, fruit harvested with or without stem exhibit a similar microorganisms community profile. However, after storage and shelf life, the community of fruit without stem shifted toward more SER-causing-pathogens, such as Lasiodiplodia, Dothiorella, and Alternaria, and separated from the community of fruit with stem. This change correlated to the high antifungal activity of stem extract that strongly inhibited both germination and growth of Lasiodiplodia theobromae and Alternaria alternata. Additionally, fruit that was harvested with stem displayed more antioxidant activity and less ROS. Altogether, these findings indicate that harvesting mango with short stem leads to higher antifungal and antioxidant activity, retaining a healthier microbial community and leading to reduced postharvest SER.

Powered by ClearMash Solutions Ltd -
Volcani treasures
About
Terms of use
Harvesting Mango Fruit with a Short Stem-End Altered Endophytic Microbiome and Reduce Stem-End Rot
8
Harvesting Mango Fruit with a Short Stem-End Altered Endophytic Microbiome and Reduce Stem-End Rot

Stem-end rot (SER) is a serious postharvest disease of mango fruit grown in semi-dry area. Pathogenic and non-pathogenic microorganisms endophytically colonize fruit stem-end. As fruit ripens, some pathogenic fungi switch from endophytic colonization to necrotrophic stage and cause SER. Various pre/post-treatments may alter the stem-end community and modify SER incidence. This study investigates the effects of harvesting mango with or without short stem-end on fruit antifungal and antioxidant activities, the endophytic microbiome, and SER during fruit storage. Our results show that harvesting mango with short stem significantly reduced SER during storage. At harvest, fruit harvested with or without stem exhibit a similar microorganisms community profile. However, after storage and shelf life, the community of fruit without stem shifted toward more SER-causing-pathogens, such as Lasiodiplodia, Dothiorella, and Alternaria, and separated from the community of fruit with stem. This change correlated to the high antifungal activity of stem extract that strongly inhibited both germination and growth of Lasiodiplodia theobromae and Alternaria alternata. Additionally, fruit that was harvested with stem displayed more antioxidant activity and less ROS. Altogether, these findings indicate that harvesting mango with short stem leads to higher antifungal and antioxidant activity, retaining a healthier microbial community and leading to reduced postharvest SER.

Scientific Publication
You may also be interested in