Advanced Search
Soil and Tillage Research

Alvaro Pires da Silva - Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Dep de Ciência do Solo, Bolsista do CNPq, Piracicaba-SP 13418-900, Brazil

B.D. Kay - Department of Land Resource Science, University of Guelph, Guelph, Ont, Canada N1G 2W1

The rates of many biological processes vary across an agricultural landscape in response to the spatial patterns of water content in the tillage zone. Although, water content varies temporally through the growing season, the combined effects of soil properties, landscape attributes, tillage or position relative to the crop row on the temporal variation in the spatial pattern in soil water content are not well understood. We measured the soil water content (0–0.20 m) regularly through three growing seasons at 32 positions along each of two transects in a side-by-side comparison of corn under conventional tillage (plowing and secondary tillage) and no till in order to identify factors with the strongest influence on the spatial patterns in water content. The tillage comparison traversed a landscape in which the clay content (cl) varied from 5.8 to 37.4% and the organic carbon content (OC) varied from 0.9 to 3.9%. The spatial pattern in water contents during wetting and drying events were temporally stable, as reflected in R2>0.7 of correlation analysis of water contents on successive measurement dates. Multiple regression analyses indicated that the water contents, averaged over all measurement dates, were positively correlated with cl and ln(OC) and were smaller in the row than the inter-row position. The reduction in water content due to conventional tillage was diminished with increasing OC. However, application of multiple regression analyses to each set of water contents measured on a given day for each year indicated that the impact of soil properties, tillage and position relative to the row varied within and among seasons.

Powered by ClearMash Solutions Ltd -
Volcani treasures
About
Terms of use
Factors contributing to temporal stability in spatial patterns of water content in the tillage zone
58

Alvaro Pires da Silva - Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Dep de Ciência do Solo, Bolsista do CNPq, Piracicaba-SP 13418-900, Brazil

B.D. Kay - Department of Land Resource Science, University of Guelph, Guelph, Ont, Canada N1G 2W1

Factors contributing to temporal stability in spatial patterns of water content in the tillage zone

The rates of many biological processes vary across an agricultural landscape in response to the spatial patterns of water content in the tillage zone. Although, water content varies temporally through the growing season, the combined effects of soil properties, landscape attributes, tillage or position relative to the crop row on the temporal variation in the spatial pattern in soil water content are not well understood. We measured the soil water content (0–0.20 m) regularly through three growing seasons at 32 positions along each of two transects in a side-by-side comparison of corn under conventional tillage (plowing and secondary tillage) and no till in order to identify factors with the strongest influence on the spatial patterns in water content. The tillage comparison traversed a landscape in which the clay content (cl) varied from 5.8 to 37.4% and the organic carbon content (OC) varied from 0.9 to 3.9%. The spatial pattern in water contents during wetting and drying events were temporally stable, as reflected in R2>0.7 of correlation analysis of water contents on successive measurement dates. Multiple regression analyses indicated that the water contents, averaged over all measurement dates, were positively correlated with cl and ln(OC) and were smaller in the row than the inter-row position. The reduction in water content due to conventional tillage was diminished with increasing OC. However, application of multiple regression analyses to each set of water contents measured on a given day for each year indicated that the impact of soil properties, tillage and position relative to the row varied within and among seasons.

Scientific Publication
You may also be interested in