Advanced Search
Syntax
Search...
Volcani treasures
About
Terms of use
Manage
Community:
אסיף מאגר המחקר החקלאי
Powered by ClearMash Solutions Ltd -
Pedigree analysis of 220 almond genotypes reveals two world mainstream breeding lines based on only three different cultivars
Year:
2021
Source of publication :
Horticulture Research
Authors :
Holland, Doron
;
.
Volume :
8
Co-Authors:

 Pérez de los Cobos, F. - Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Mas Bové, Ctra. Reus-El Morell Km 3,8, Constantí, Tarragona 43120, Spain; Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB. Cerdanyola del Vallès (Bellaterra), Barcelona, 08193, Spain.  
Martínez-García, P.J. - Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), P.O. Box 164, Espinardo, Murcia 30100, Spain. 
Romero, A. - Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Mas Bové, Ctra. Reus-El Morell Km 3,8, Constantí, Tarragona 43120, Spain. 
Miarnau, X. - Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Fruitcentre, PCiTAL, Gardeny Park, Fruitcentre Building, Lleida, 25003, Spain. 
Eduardo, I. - Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB. Cerdanyola del Vallès (Bellaterra), Barcelona, 08193, Spain 
Howad, W. - Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB. Cerdanyola del Vallès (Bellaterra), Barcelona, 08193, Spain 
Mnejja, M. - Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB. Cerdanyola del Vallès (Bellaterra), Barcelona, 08193, Spain 
Dicenta, F. - Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), P.O. Box 164, Espinardo, Murcia 30100, Spain 
Socias i Company, R. - Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059, Zaragoza, Instituto Agroalimentario de Aragón IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain 
Rubio-Cabetas, M.J. - Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059, Zaragoza, Instituto Agroalimentario de Aragón IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain 
Gradziel, T.M. - University of California, 1 Shields Avenue, Davis, CA 95616, United States
Wirthensohn, M. - University of Adelaide, Waite Research, School of Agriculture, Food and Wine, PMB 1, Glen Osmond, Adelaide, SA 5064, Australia. 
Duval, H. - Institut National de la Recherche Agronomique (INRA), Domain St. Maurice CS 60094, Montfavet Cedex, 84143, France.
Holland, D. - Agricultural Research Organization, Newe-Ya’ar Research Center, P.O. Box 1021, Ramat Yishad, 30095, Israel.
 Arús, P. - Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB. Cerdanyola del Vallès (Bellaterra), Barcelona, 08193, Spain.
 Vargas, F.J. - Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Mas Bové, Ctra. Reus-El Morell Km 3,8, Constantí, Tarragona 43120, Spain. 
Batlle, I. - Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Mas Bové, Ctra. Reus-El Morell Km 3,8, Constantí, Tarragona 43120, Spain. 

Facilitators :
From page:
0
To page:
0
(
Total pages:
1
)
Abstract:

Loss of genetic variability is an increasing challenge in tree breeding programs due to the repeated use of a reduced number of founder genotypes. However, in almond, little is known about the genetic variability in current breeding stocks, although several cases of inbreeding depression have been reported. To gain insights into the genetic structure in modern breeding programs worldwide, marker-verified pedigree data of 220 almond cultivars and breeding selections were analyzed. Inbreeding coefficients, pairwise relatedness, and genetic contribution were calculated for these genotypes. The results reveal two mainstream breeding lines based on three cultivars: “Tuono”, “Cristomorto”, and “Nonpareil”. Descendants from “Tuono” or “Cristomorto” number 76 (sharing 34 descendants), while “Nonpareil” has 71 descendants. The mean inbreeding coefficient of the analyzed genotypes was 0.041, with 14 genotypes presenting a high inbreeding coefficient, over 0.250. Breeding programs from France, the USA, and Spain showed inbreeding coefficients of 0.075, 0.070, and 0.037, respectively. According to their genetic contribution, modern cultivars from Israel, France, the USA, Spain, and Australia trace back to a maximum of six main founding genotypes. Among the group of 65 genotypes carrying the Sf allele for self-compatibility, the mean relatedness coefficient was 0.125, with “Tuono” as the main founding genotype (24.7% of total genetic contribution). The results broaden our understanding about the tendencies followed in almond breeding over the last 50 years and will have a large impact into breeding decision-making process worldwide. Increasing current genetic variability is required in almond breeding programs to assure genetic gain and continuing breeding progress.

Note:
Related Files :
Almond
Breeding lines
cultivar
pedigree analysis
Show More
Related Content
More details
DOI :
10.1038/s41438-020-00444-4
Article number:
0
Affiliations:
Database:
Scopus
Publication Type:
article
;
.
Language:
English
Editors' remarks:
ID:
53026
Last updated date:
02/03/2022 17:27
Creation date:
10/01/2021 20:01
Scientific Publication
Pedigree analysis of 220 almond genotypes reveals two world mainstream breeding lines based on only three different cultivars
8

 Pérez de los Cobos, F. - Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Mas Bové, Ctra. Reus-El Morell Km 3,8, Constantí, Tarragona 43120, Spain; Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB. Cerdanyola del Vallès (Bellaterra), Barcelona, 08193, Spain.  
Martínez-García, P.J. - Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), P.O. Box 164, Espinardo, Murcia 30100, Spain. 
Romero, A. - Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Mas Bové, Ctra. Reus-El Morell Km 3,8, Constantí, Tarragona 43120, Spain. 
Miarnau, X. - Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Fruitcentre, PCiTAL, Gardeny Park, Fruitcentre Building, Lleida, 25003, Spain. 
Eduardo, I. - Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB. Cerdanyola del Vallès (Bellaterra), Barcelona, 08193, Spain 
Howad, W. - Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB. Cerdanyola del Vallès (Bellaterra), Barcelona, 08193, Spain 
Mnejja, M. - Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB. Cerdanyola del Vallès (Bellaterra), Barcelona, 08193, Spain 
Dicenta, F. - Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), P.O. Box 164, Espinardo, Murcia 30100, Spain 
Socias i Company, R. - Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059, Zaragoza, Instituto Agroalimentario de Aragón IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain 
Rubio-Cabetas, M.J. - Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059, Zaragoza, Instituto Agroalimentario de Aragón IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain 
Gradziel, T.M. - University of California, 1 Shields Avenue, Davis, CA 95616, United States
Wirthensohn, M. - University of Adelaide, Waite Research, School of Agriculture, Food and Wine, PMB 1, Glen Osmond, Adelaide, SA 5064, Australia. 
Duval, H. - Institut National de la Recherche Agronomique (INRA), Domain St. Maurice CS 60094, Montfavet Cedex, 84143, France.
Holland, D. - Agricultural Research Organization, Newe-Ya’ar Research Center, P.O. Box 1021, Ramat Yishad, 30095, Israel.
 Arús, P. - Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB. Cerdanyola del Vallès (Bellaterra), Barcelona, 08193, Spain.
 Vargas, F.J. - Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Mas Bové, Ctra. Reus-El Morell Km 3,8, Constantí, Tarragona 43120, Spain. 
Batlle, I. - Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Mas Bové, Ctra. Reus-El Morell Km 3,8, Constantí, Tarragona 43120, Spain. 

Pedigree analysis of 220 almond genotypes reveals two world mainstream breeding lines based on only three different cultivars

Loss of genetic variability is an increasing challenge in tree breeding programs due to the repeated use of a reduced number of founder genotypes. However, in almond, little is known about the genetic variability in current breeding stocks, although several cases of inbreeding depression have been reported. To gain insights into the genetic structure in modern breeding programs worldwide, marker-verified pedigree data of 220 almond cultivars and breeding selections were analyzed. Inbreeding coefficients, pairwise relatedness, and genetic contribution were calculated for these genotypes. The results reveal two mainstream breeding lines based on three cultivars: “Tuono”, “Cristomorto”, and “Nonpareil”. Descendants from “Tuono” or “Cristomorto” number 76 (sharing 34 descendants), while “Nonpareil” has 71 descendants. The mean inbreeding coefficient of the analyzed genotypes was 0.041, with 14 genotypes presenting a high inbreeding coefficient, over 0.250. Breeding programs from France, the USA, and Spain showed inbreeding coefficients of 0.075, 0.070, and 0.037, respectively. According to their genetic contribution, modern cultivars from Israel, France, the USA, Spain, and Australia trace back to a maximum of six main founding genotypes. Among the group of 65 genotypes carrying the Sf allele for self-compatibility, the mean relatedness coefficient was 0.125, with “Tuono” as the main founding genotype (24.7% of total genetic contribution). The results broaden our understanding about the tendencies followed in almond breeding over the last 50 years and will have a large impact into breeding decision-making process worldwide. Increasing current genetic variability is required in almond breeding programs to assure genetic gain and continuing breeding progress.

Scientific Publication
נגישות
menu      
You may also be interested in