נגישות
menu      
Advanced Search
Syntax
Search...
Volcani treasures
About
Terms of use
Manage
Community:
אסיף מאגר המחקר החקלאי
Powered by ClearMash Solutions Ltd -
Soil quality index for assessing phosphate mining restoration in a hyper-arid environment
Year:
2021
Source of publication :
Ecological Indicators
Authors :
Paz-Kagan, Tarin
;
.
Zaady, Eli
;
.
Volume :
125
Co-Authors:

Nathan Levi

Noa Hillel.

Eli Zaady

Guy Rotem

Yaron Ziv

Arnon Karnieli

Tarin Paz-Kagan

Facilitators :
From page:
0
To page:
0
(
Total pages:
1
)
Abstract:

Mining contributes significantly to economic development, but it also entails extensive environmental damage, such as soil degradation and water and air pollution. Mining activity impacts the soil quality, often making it unable to support ecosystem function and structure. The current study aims to apply the soil quality index (SQI) as a methodology for quantifying soil restoration status in an open-pit phosphate mine in Israel’s hyper-arid environment. In this regard, we evaluated an ecological restoration practice that includes topsoil refilling compared to the adjacent undisturbed natural system, using transformed and standardized scorings of 11 physical, biological, and chemical soil properties that were further statistically integrated into overall SQI values. Our results revealed significant differences between the restoration practice areas and the nearby natural areas, with a higher soil quality value in the latter. It is proposed that the topsoil restoration method is mainly affected by soil biological indicators, such as soil organic matter, soil proteins, and polysaccharides related to micro-organic growth, and in a lesser extent, by physical properties (primarily infiltration rate, followed by AWC). The former properties encourage the biocrust establishment, which is essential for soil surface stabilization and affects the water infiltration rate and nutrient availability. The chemical indicators showed no significant differences between most of the sites for the overall soil quality. In conclusion, soil properties, primarily physio-biological ones, should be selected to quantify and evaluate restoration practices in hyper-arid ecosystems.

Note:
Related Files :
Biocrusts
ecological restoration
Hyper-arid ecosystems
Soil indicators
Show More
Related Content
More details
DOI :
10.1016/j.ecolind.2021.107571
Article number:
107571
Affiliations:
Database:
Scopus
Publication Type:
article
;
.
Language:
English
Editors' remarks:
ID:
54471
Last updated date:
02/03/2022 17:27
Creation date:
07/04/2021 20:31
You may also be interested in
Scientific Publication
Soil quality index for assessing phosphate mining restoration in a hyper-arid environment
125

Nathan Levi

Noa Hillel.

Eli Zaady

Guy Rotem

Yaron Ziv

Arnon Karnieli

Tarin Paz-Kagan

Soil quality index for assessing phosphate mining restoration in a hyper-arid environment

Mining contributes significantly to economic development, but it also entails extensive environmental damage, such as soil degradation and water and air pollution. Mining activity impacts the soil quality, often making it unable to support ecosystem function and structure. The current study aims to apply the soil quality index (SQI) as a methodology for quantifying soil restoration status in an open-pit phosphate mine in Israel’s hyper-arid environment. In this regard, we evaluated an ecological restoration practice that includes topsoil refilling compared to the adjacent undisturbed natural system, using transformed and standardized scorings of 11 physical, biological, and chemical soil properties that were further statistically integrated into overall SQI values. Our results revealed significant differences between the restoration practice areas and the nearby natural areas, with a higher soil quality value in the latter. It is proposed that the topsoil restoration method is mainly affected by soil biological indicators, such as soil organic matter, soil proteins, and polysaccharides related to micro-organic growth, and in a lesser extent, by physical properties (primarily infiltration rate, followed by AWC). The former properties encourage the biocrust establishment, which is essential for soil surface stabilization and affects the water infiltration rate and nutrient availability. The chemical indicators showed no significant differences between most of the sites for the overall soil quality. In conclusion, soil properties, primarily physio-biological ones, should be selected to quantify and evaluate restoration practices in hyper-arid ecosystems.

Scientific Publication
You may also be interested in