נגישות
menu      
Advanced Search
Bioresource Technology

Sheldon Tarre, Michael Beliavski, Michal Green

The effect of temperatures below 20 °C (20, 15 and 10 °C) on the anaerobic degradation pathway and kinetics of domestic wastewater fractionated at different sizes was studied in a fluidized-bed batch reactor. The overall degradation pathway was characterized by a soluble fraction degrading according to zero-order kinetics and a colloidal fraction (between 0.45 and 4.5 μm) that first disintegrates into a particulate fraction smaller than 0.45 μm before finally degrading. The colloidal degradation processes follow a first-order kinetic. In contrast, suspended solids (bigger than 4.5 μm) degrade to soluble and colloidal fractions according to first-order kinetics. The colloidal fraction originating from suspended solids further degrades into soluble fraction. These soluble fractions have the same degradation kinetics as the original soluble fraction. The suspended solids degradation was highly affected by temperature, whereas the soluble fraction slightly affected and the colloidal fraction was not affected at all. On the other hand, the colloidal non-degradable fraction increased significantly with the decrease in temperature while the suspended solids slowly increased. The soluble non-degradable fraction was little affected by temperatures changes.

Powered by ClearMash Solutions Ltd -
Volcani treasures
About
Terms of use
Anaerobic degradation pathway and kinetics of domestic wastewater at low temperatures
100

Sheldon Tarre, Michael Beliavski, Michal Green

Anaerobic degradation pathway and kinetics of domestic wastewater at low temperatures

The effect of temperatures below 20 °C (20, 15 and 10 °C) on the anaerobic degradation pathway and kinetics of domestic wastewater fractionated at different sizes was studied in a fluidized-bed batch reactor. The overall degradation pathway was characterized by a soluble fraction degrading according to zero-order kinetics and a colloidal fraction (between 0.45 and 4.5 μm) that first disintegrates into a particulate fraction smaller than 0.45 μm before finally degrading. The colloidal degradation processes follow a first-order kinetic. In contrast, suspended solids (bigger than 4.5 μm) degrade to soluble and colloidal fractions according to first-order kinetics. The colloidal fraction originating from suspended solids further degrades into soluble fraction. These soluble fractions have the same degradation kinetics as the original soluble fraction. The suspended solids degradation was highly affected by temperature, whereas the soluble fraction slightly affected and the colloidal fraction was not affected at all. On the other hand, the colloidal non-degradable fraction increased significantly with the decrease in temperature while the suspended solids slowly increased. The soluble non-degradable fraction was little affected by temperatures changes.

Scientific Publication
You may also be interested in