נגישות
menu      
Advanced Search
Syntax
Search...
Volcani treasures
About
Terms of use
Manage
Community:
אסיף מאגר המחקר החקלאי
Powered by ClearMash Solutions Ltd -
The Highs and Lows of P Supply in Medical Cannabis: Effects on Cannabinoids, the Ionome, and Morpho-Physiology
Year:
2021
Source of publication :
Frontiers in Plant Science
Authors :
Bernstein, Nirit
;
.
Volume :
12
Co-Authors:

Sivan Shiponi 
Nirit Bernstein              

Facilitators :
From page:
1
To page:
22
(
Total pages:
22
)
Abstract:

Environmental conditions, including the availability of mineral nutrients, affect secondary metabolism in plants. Therefore, growing conditions have significant pharmaceutical and economic importance for Cannabis sativa. Phosphorous is an essential macronutrient that affects central biosynthesis pathways. In this study, we evaluated the hypothesis that P uptake, distribution and availability in the plant affect the biosynthesis of cannabinoids. Two genotypes of medical "drug-type" cannabis plants were grown under five P concentrations of 5, 15, 30, 60, and 90 mg L-1 (ppm) in controlled environmental conditions. The results reveal several dose-dependent effects of P nutrition on the cannabinoid profile of both genotypes, as well as on the ionome and plant functional physiology, thus supporting the hypothesis: (i) P concentrations ≤15 mg L-1 were insufficient to support optimal plant function and reduced photosynthesis, transpiration, stomatal conductance and growth; (ii) 30-90 mg L-1 P was within the optimal range for plant development and function, and 30 mg L-1 P was sufficient for producing 80% of the maximum yield; (iii) Ionome: about 80% of the plant P accumulated in the unfertilized inflorescences; (iv) Cannabinoids: P supply higher than 5 mg L-1 reduced Δ9-tetrahydrocannabinolic acid (THCA) and cannabidiolic acid (CBDA) concentrations in the inflorescences by up to 25%. Cannabinoid concentrations decreased linearly with increasing yield, consistent with a yield dilution effect, but the total cannabinoid content per plant increased with increasing P supply. These results reveal contrasting trends for effects of P supply on cannabinoid concentrations that were highest under <30 mg L-1 P, vs. inflorescence biomass that was highest under 30-90 mg L-1 P. Thus, the P regime should be adjusted to reflect production goals. The results demonstrate the potential of mineral nutrition to regulate cannabinoid metabolism and optimize pharmacological quality.

Note:
Related Files :
Cannabinoids
Cannabis
Development
Efficiency
Fertilization
nutrition
Phosphorus
Show More
Related Content
More details
DOI :
10.3389/fpls.2021.657323
Article number:
657323
Affiliations:
Database:
PubMed
Publication Type:
article
;
.
Language:
English
Editors' remarks:
ID:
55883
Last updated date:
02/03/2022 17:27
Creation date:
09/08/2021 16:34
You may also be interested in
Scientific Publication
The Highs and Lows of P Supply in Medical Cannabis: Effects on Cannabinoids, the Ionome, and Morpho-Physiology
12

Sivan Shiponi 
Nirit Bernstein              

The Highs and Lows of P Supply in Medical Cannabis: Effects on Cannabinoids, the Ionome, and Morpho-Physiology

Environmental conditions, including the availability of mineral nutrients, affect secondary metabolism in plants. Therefore, growing conditions have significant pharmaceutical and economic importance for Cannabis sativa. Phosphorous is an essential macronutrient that affects central biosynthesis pathways. In this study, we evaluated the hypothesis that P uptake, distribution and availability in the plant affect the biosynthesis of cannabinoids. Two genotypes of medical "drug-type" cannabis plants were grown under five P concentrations of 5, 15, 30, 60, and 90 mg L-1 (ppm) in controlled environmental conditions. The results reveal several dose-dependent effects of P nutrition on the cannabinoid profile of both genotypes, as well as on the ionome and plant functional physiology, thus supporting the hypothesis: (i) P concentrations ≤15 mg L-1 were insufficient to support optimal plant function and reduced photosynthesis, transpiration, stomatal conductance and growth; (ii) 30-90 mg L-1 P was within the optimal range for plant development and function, and 30 mg L-1 P was sufficient for producing 80% of the maximum yield; (iii) Ionome: about 80% of the plant P accumulated in the unfertilized inflorescences; (iv) Cannabinoids: P supply higher than 5 mg L-1 reduced Δ9-tetrahydrocannabinolic acid (THCA) and cannabidiolic acid (CBDA) concentrations in the inflorescences by up to 25%. Cannabinoid concentrations decreased linearly with increasing yield, consistent with a yield dilution effect, but the total cannabinoid content per plant increased with increasing P supply. These results reveal contrasting trends for effects of P supply on cannabinoid concentrations that were highest under <30 mg L-1 P, vs. inflorescence biomass that was highest under 30-90 mg L-1 P. Thus, the P regime should be adjusted to reflect production goals. The results demonstrate the potential of mineral nutrition to regulate cannabinoid metabolism and optimize pharmacological quality.

Scientific Publication
You may also be interested in