נגישות
menu      
Advanced Search
Heredity
  • Che-Wei Chang, 
  • Eyal Fridman, 
  • Martin Mascher, 
  • Axel Himmelbach 
  • Karl Schmid 

Determining the extent of genetic variation that reflects local adaptation in crop-wild relatives is of interest for the purpose of identifying useful genetic diversity for plant breeding. We investigated the association of genomic variation with geographical and environmental factors in wild barley (Hordeum vulgare L. ssp. spontaneum) populations of the Southern Levant using genotyping by sequencing (GBS) of 244 accessions in the Barley 1K+ collection. The inference of population structure resulted in four genetic clusters that corresponded to eco-geographical habitats and a significant association between lower gene flow rates and geographical barriers, e.g. the Judaean Mountains and the Sea of Galilee. Redundancy analysis (RDA) revealed that spatial autocorrelation explained 45% and environmental variables explained 15% of total genomic variation. Only 4.5% of genomic variation was solely attributed to environmental variation if the component confounded with spatial autocorrelation was excluded. A synthetic environmental variable combining latitude, solar radiation, and accumulated precipitation explained the highest proportion of genomic variation (3.9%). When conditioned on population structure, soil water capacity was the most important environmental variable explaining 1.18% of genomic variation. Genome scans with outlier analysis and genome-environment association studies were conducted to identify adaptation signatures. RDA and outlier methods jointly detected selection signatures in the pericentromeric regions, which have reduced recombination, of the chromosomes 3H, 4H, and 5H. However, selection signatures mostly disappeared after correction for population structure. In conclusion, adaptation to the highly diverse environments of the Southern Levant over short geographical ranges had a limited effect on the genomic diversity of wild barley. This highlighted the importance of nonselective forces in genetic differentiation.

Powered by ClearMash Solutions Ltd -
Volcani treasures
About
Terms of use
Physical geography, isolation by distance and environmental variables shape genomic variation of wild barley (Hordeum vulgare L. ssp. spontaneum) in the Southern Levant
128
  • Che-Wei Chang, 
  • Eyal Fridman, 
  • Martin Mascher, 
  • Axel Himmelbach 
  • Karl Schmid 
Physical geography, isolation by distance and environmental variables shape genomic variation of wild barley (Hordeum vulgare L. ssp. spontaneum) in the Southern Levant

Determining the extent of genetic variation that reflects local adaptation in crop-wild relatives is of interest for the purpose of identifying useful genetic diversity for plant breeding. We investigated the association of genomic variation with geographical and environmental factors in wild barley (Hordeum vulgare L. ssp. spontaneum) populations of the Southern Levant using genotyping by sequencing (GBS) of 244 accessions in the Barley 1K+ collection. The inference of population structure resulted in four genetic clusters that corresponded to eco-geographical habitats and a significant association between lower gene flow rates and geographical barriers, e.g. the Judaean Mountains and the Sea of Galilee. Redundancy analysis (RDA) revealed that spatial autocorrelation explained 45% and environmental variables explained 15% of total genomic variation. Only 4.5% of genomic variation was solely attributed to environmental variation if the component confounded with spatial autocorrelation was excluded. A synthetic environmental variable combining latitude, solar radiation, and accumulated precipitation explained the highest proportion of genomic variation (3.9%). When conditioned on population structure, soil water capacity was the most important environmental variable explaining 1.18% of genomic variation. Genome scans with outlier analysis and genome-environment association studies were conducted to identify adaptation signatures. RDA and outlier methods jointly detected selection signatures in the pericentromeric regions, which have reduced recombination, of the chromosomes 3H, 4H, and 5H. However, selection signatures mostly disappeared after correction for population structure. In conclusion, adaptation to the highly diverse environments of the Southern Levant over short geographical ranges had a limited effect on the genomic diversity of wild barley. This highlighted the importance of nonselective forces in genetic differentiation.

Scientific Publication
You may also be interested in