נגישות
menu      
Advanced Search
Syntax
Search...
Volcani treasures
About
Terms of use
Manage
Community:
אסיף מאגר המחקר החקלאי
Powered by ClearMash Solutions Ltd -
Repurposing anaerobic digestate for economical biomanufacturing and water recovery
Year:
2022
Authors :
Posmanik, Roy
;
.
Volume :
106
Co-Authors:

Kumar S
Posmanik R
Spatari S
Ujor VC

Facilitators :
From page:
1419
To page:
1434
(
Total pages:
16
)
Abstract:

Due to mounting impacts of climate change, particularly increased incidence of drought, hence water scarcity, it has become imperative to develop new technologies for recovering water from nutrient-rich, water-replete effluents other than sewage. Notably, anaerobic digestate could be harnessed for the purpose of water recovery by repurposing digestate-borne minerals as nutrients in fermentative processes. The high concentrations of ammonium, phosphate, sulfate, and metals in anaerobic digestate are veritable microbial nutrients that could be harnessed for bio-production of bulk and specialty chemicals. Tethering nutrient sequestration from anaerobic digestate to bio-product accumulation offers promise for concomitant water recovery, bio-chemical production, and possible phosphate recovery. In this review, we explore the potential of anaerobic digestate as a nutrient source and as a buffering agent in fermentative production of glutamine, glutamate, fumarate, lactate, and succinate. Additionally, we discuss the potential of synthetic biology as a tool for enhancing nutrient removal from anaerobic digestate and for expanding the range of products derivable from digestate-based fermentations. Strategies that harness the nutrients in anaerobic digestate with bio-product accumulation and water recovery could have far-reaching implications on sustainable management of nutrient-rich manure, tannery, and fish processing effluents that also contain high amounts of water. KEY POINTS: • Anaerobic digestate may serve as a source of nutrients in fermentation. • Use of digestate in fermentation would lead to the recovery of valuable water.

Note:
Related Files :
anaerobic digestion
Recovery
water
Show More
Related Content
More details
DOI :
10.1007/s00253-022-11804-6
Article number:
0
Affiliations:
Database:
Scopus
Publication Type:
Review
;
.
Language:
English
Editors' remarks:
ID:
58117
Last updated date:
22/03/2022 10:20
Creation date:
02/03/2022 18:03
You may also be interested in
Scientific Publication
Repurposing anaerobic digestate for economical biomanufacturing and water recovery
106

Kumar S
Posmanik R
Spatari S
Ujor VC

Repurposing anaerobic digestate for economical biomanufacturing and water recovery

Due to mounting impacts of climate change, particularly increased incidence of drought, hence water scarcity, it has become imperative to develop new technologies for recovering water from nutrient-rich, water-replete effluents other than sewage. Notably, anaerobic digestate could be harnessed for the purpose of water recovery by repurposing digestate-borne minerals as nutrients in fermentative processes. The high concentrations of ammonium, phosphate, sulfate, and metals in anaerobic digestate are veritable microbial nutrients that could be harnessed for bio-production of bulk and specialty chemicals. Tethering nutrient sequestration from anaerobic digestate to bio-product accumulation offers promise for concomitant water recovery, bio-chemical production, and possible phosphate recovery. In this review, we explore the potential of anaerobic digestate as a nutrient source and as a buffering agent in fermentative production of glutamine, glutamate, fumarate, lactate, and succinate. Additionally, we discuss the potential of synthetic biology as a tool for enhancing nutrient removal from anaerobic digestate and for expanding the range of products derivable from digestate-based fermentations. Strategies that harness the nutrients in anaerobic digestate with bio-product accumulation and water recovery could have far-reaching implications on sustainable management of nutrient-rich manure, tannery, and fish processing effluents that also contain high amounts of water. KEY POINTS: • Anaerobic digestate may serve as a source of nutrients in fermentation. • Use of digestate in fermentation would lead to the recovery of valuable water.

Scientific Publication
You may also be interested in