נגישות
menu      
Advanced Search
Syntax
Search...
Volcani treasures
About
Terms of use
Manage
Community:
אסיף מאגר המחקר החקלאי
Powered by ClearMash Solutions Ltd -
Phylogeny and disparate selection signatures suggest two genetically independent domestication events in pea (Pisum L.)
Year:
2022
Source of publication :
The plant journal
Authors :
Ophir, Ron
;
.
Volume :
Co-Authors:

Timo Hellwig 
Shahal Abbo
Ron Ophir 

Facilitators :
From page:
0
To page:
0
(
Total pages:
1
)
Abstract:

Domestication is considered a model of adaptation that can be used to draw conclusions about the modus operandi of selection in natural systems. Investigating domestication may give insights into how plants react to different intensities of human manipulation, which has direct implication for the continuing efforts of crop improvement. Therefore, scientists of various disciplines study domestication-related questions to understand the biological and cultural bases of the domestication process. We employed restriction site-associated DNA sequencing (RAD-seq) of 494 Pisum sativum (pea) samples from all wild and domesticated groups to analyze the genetic structure of the collection. Patterns of ancient admixture were investigated by analysis of admixture graphs. We used two complementary approaches, one diversity based and one based on differentiation, to detect the selection signatures putatively associated with domestication. An analysis of the subpopulation structure of wild P. sativum revealed five distinct groups with a notable geographic pattern. Pisum abyssinicum clustered unequivocally within the P. sativum complex, without any indication of hybrid origin. We detected 32 genomic regions putatively subjected to selection: 29 in P. sativum ssp. sativum and three in P. abyssinicum. The two domesticated groups did not share regions under selection and did not display similar haplotype patterns within those regions. Wild P. sativum is structured into well-diverged subgroups. Although Pisum sativum ssp. humile is not supported as a taxonomic entity, the so-called 'southern humile' is a genuine wild group. Introgression did not shape the variation observed within the sampled germplasm. The two domesticated pea groups display distinct genetic bases of domestication, suggesting two genetically independent domestication events.

Note:
Related Files :
crop wild relatives
domestication
genetic diversity
introgression
phylogeny
signatures of selection
Show More
Related Content
More details
DOI :
10.1111/tpj.15678
Article number:
0
Affiliations:
Database:
Scopus
Publication Type:
article
;
.
Language:
English
Editors' remarks:
ID:
58163
Last updated date:
09/03/2022 16:38
Creation date:
08/03/2022 17:35
You may also be interested in
Scientific Publication
Phylogeny and disparate selection signatures suggest two genetically independent domestication events in pea (Pisum L.)

Timo Hellwig 
Shahal Abbo
Ron Ophir 

Phylogeny and disparate selection signatures suggest two genetically independent domestication events in pea (Pisum L.)

Domestication is considered a model of adaptation that can be used to draw conclusions about the modus operandi of selection in natural systems. Investigating domestication may give insights into how plants react to different intensities of human manipulation, which has direct implication for the continuing efforts of crop improvement. Therefore, scientists of various disciplines study domestication-related questions to understand the biological and cultural bases of the domestication process. We employed restriction site-associated DNA sequencing (RAD-seq) of 494 Pisum sativum (pea) samples from all wild and domesticated groups to analyze the genetic structure of the collection. Patterns of ancient admixture were investigated by analysis of admixture graphs. We used two complementary approaches, one diversity based and one based on differentiation, to detect the selection signatures putatively associated with domestication. An analysis of the subpopulation structure of wild P. sativum revealed five distinct groups with a notable geographic pattern. Pisum abyssinicum clustered unequivocally within the P. sativum complex, without any indication of hybrid origin. We detected 32 genomic regions putatively subjected to selection: 29 in P. sativum ssp. sativum and three in P. abyssinicum. The two domesticated groups did not share regions under selection and did not display similar haplotype patterns within those regions. Wild P. sativum is structured into well-diverged subgroups. Although Pisum sativum ssp. humile is not supported as a taxonomic entity, the so-called 'southern humile' is a genuine wild group. Introgression did not shape the variation observed within the sampled germplasm. The two domesticated pea groups display distinct genetic bases of domestication, suggesting two genetically independent domestication events.

Scientific Publication
You may also be interested in