נגישות
menu      
Advanced Search
Syntax
Search...
Volcani treasures
About
Terms of use
Manage
Community:
אסיף מאגר המחקר החקלאי
Powered by ClearMash Solutions Ltd -
Dry Matter Accumulation in Maize in Response to Film Mulching and Plant Density in Northeast China
Year:
2022
Source of publication :
Plants
Authors :
Friedman, Samuel
;
.
Volume :
Co-Authors:

Zhenchuang Zhu 
Shmulik P Friedman
Zhijun Chen
Junlin Zheng
Shijun Sun

Facilitators :
From page:
0
To page:
0
(
Total pages:
1
)
Abstract:

Film mulching in combination with high plant density (PD) is a common agronomic technique in rainfed maize (Zea mays L.) production. However, the effects of combining colored plastic film mulching and PD on dry matter accumulation (DMA) dynamics and yield of spring maize have not been thoroughly elucidated to date. Thus, a 2-year field experiment was conducted with three mulching treatments (no mulching (M0), transparent plastic film mulching (M1), and black plastic film mulching (M2)) and five plant densities (60,000 (D1), 67,500 (D2), 75,000 (D3), 82,500 (D4), and 90,000 plants ha-1 (D5)). A logistic equation was used to simulate the DMA process of spring maize by taking the effective accumulated air temperature compensated by effective accumulated soil temperature as the independent variable. The results showed that compared with M0 treatment, the growth period of M1 and M2 treatments was preceded by 10 and 4 days in 2016, and 10 and 7 days in 2017, respectively. The corrected logistic equation performed well in the characterization of maize DMA process with its characteristic parameter (final DMA, a; maximum growth rate of DMA, GRmax; effective accumulated temperature under maximum growth rate of DMA, xinf; effective accumulated temperature when maize stops growing, xmax; effective accumulated temperature when maize enters the fast-growing period, x1). Plastic film color mainly affected DMA by influencing xinf. PD mainly affected DMA by affecting GRmax and x1. During the first slow growing period, the DMA of M1 treatment was the largest among the three mulching treatments, however, during the fast growing period, the DMA of M2 treatment accelerated and exceeded that of M1 treatment, resulting in the largest final DMA(a) and yield. When the PD was increased from D1 to D4, the maximum growth rate (GRmax) continued to increase, and the effective accumulated temperature when maize enters the fast growing period (x1) continued to decrease, which substantially increased the final DMA(a) and yield. The application of M2D4 treatment can harmonize the relevant factors to improve the DMA and yield of spring maize in rainfed regions of Northeast China.

Note:
Related Files :
effective accumulated temperature
logistic equation
maize developmental progress
plastic film color
Temperature compensation
Show More
Related Content
More details
DOI :
10.3390/plants11111411
Article number:
0
Affiliations:
Database:
PubMed
Publication Type:
article
;
.
Language:
English
Editors' remarks:
ID:
59433
Last updated date:
13/06/2022 16:52
Creation date:
13/06/2022 16:51
Scientific Publication
Dry Matter Accumulation in Maize in Response to Film Mulching and Plant Density in Northeast China

Zhenchuang Zhu 
Shmulik P Friedman
Zhijun Chen
Junlin Zheng
Shijun Sun

Dry Matter Accumulation in Maize in Response to Film Mulching and Plant Density in Northeast China .

Film mulching in combination with high plant density (PD) is a common agronomic technique in rainfed maize (Zea mays L.) production. However, the effects of combining colored plastic film mulching and PD on dry matter accumulation (DMA) dynamics and yield of spring maize have not been thoroughly elucidated to date. Thus, a 2-year field experiment was conducted with three mulching treatments (no mulching (M0), transparent plastic film mulching (M1), and black plastic film mulching (M2)) and five plant densities (60,000 (D1), 67,500 (D2), 75,000 (D3), 82,500 (D4), and 90,000 plants ha-1 (D5)). A logistic equation was used to simulate the DMA process of spring maize by taking the effective accumulated air temperature compensated by effective accumulated soil temperature as the independent variable. The results showed that compared with M0 treatment, the growth period of M1 and M2 treatments was preceded by 10 and 4 days in 2016, and 10 and 7 days in 2017, respectively. The corrected logistic equation performed well in the characterization of maize DMA process with its characteristic parameter (final DMA, a; maximum growth rate of DMA, GRmax; effective accumulated temperature under maximum growth rate of DMA, xinf; effective accumulated temperature when maize stops growing, xmax; effective accumulated temperature when maize enters the fast-growing period, x1). Plastic film color mainly affected DMA by influencing xinf. PD mainly affected DMA by affecting GRmax and x1. During the first slow growing period, the DMA of M1 treatment was the largest among the three mulching treatments, however, during the fast growing period, the DMA of M2 treatment accelerated and exceeded that of M1 treatment, resulting in the largest final DMA(a) and yield. When the PD was increased from D1 to D4, the maximum growth rate (GRmax) continued to increase, and the effective accumulated temperature when maize enters the fast growing period (x1) continued to decrease, which substantially increased the final DMA(a) and yield. The application of M2D4 treatment can harmonize the relevant factors to improve the DMA and yield of spring maize in rainfed regions of Northeast China.

Scientific Publication
You may also be interested in