נגישות
menu      
Advanced Search
Syntax
Search...
Volcani treasures
About
Terms of use
Manage
Community:
אסיף מאגר המחקר החקלאי
Powered by ClearMash Solutions Ltd -
Phenylalanine induces mango fruit resistance against chilling injuries during storage at suboptimal temperature
Year:
2022
Source of publication :
Food Chemistry
Authors :
Alkan, Noam
;
.
Fanyuk, Michal
;
.
Feygenberg, Oleg
;
.
Maurer, Dalia
;
.
Oren-Shamir, Michal
;
.
Ovadia, Rinat
;
.
Patel, Manish Kumar
;
.
Sela, Noa
;
.
Volume :
Co-Authors:

 

Manish Kumar Patel
Michal Fanyuk
Oleg Feyngenberg
Dalia Maurer
Noa Sela
Rinat Ovadia
Michal Oren-Shamir
Noam Alkan 

Facilitators :
From page:
0
To page:
0
(
Total pages:
1
)
Abstract:

Cold is the best means of prolonging fruit storage. However, tropical fruit are susceptible to cold storage. The mode of action of mango fruit tolerance to suboptimal cold temperature of 7 or 10 °C after postharvest application of 8 mM phenylalanine was investigated using transcriptomic and metabolomic analyses of mango fruit during suboptimal cold storage. Phenylalanine-treated fruit had less chilling injuries-black spot and pitting electrolyte leakage,-and reduced decay after suboptimal cold storage. Phenylalanine treatment induced genes related to plant-pathogen interactions, plant hormone signal transduction, and the phenylpropanoid pathway, increasing the levels of the flavonoids quercetin and kaempferol glycosides and anthocyanins, and antioxidant content. Reduced oxidation led to lower lipid peroxidation, and a reduction in fatty acid-degradation products, e.g., volatile aldehydes. Treatment with phenylalanine, therefore, enhances chilling tolerance of mango fruit through regulation of metabolic and defense-related pathways, maintaining high levels of flavonoids, and antioxidants enzyme activity, and reducing H2O2 content, lipid peroxidation, and volatile aldehydes.

Note:
Related Files :
antioxidant
Chilling
flavonoid
lipid peroxidation
Phenylalanine
Phenylpropanoid pathway
Resistance
Volatile
Show More
Related Content
More details
DOI :
10.1016/j.foodchem.2022.134909
Article number:
0
Affiliations:
Database:
PubMed
Publication Type:
article
;
.
Language:
English
Editors' remarks:
ID:
62915
Last updated date:
27/12/2022 16:08
Creation date:
27/12/2022 16:08
Scientific Publication
Phenylalanine induces mango fruit resistance against chilling injuries during storage at suboptimal temperature

 

Manish Kumar Patel
Michal Fanyuk
Oleg Feyngenberg
Dalia Maurer
Noa Sela
Rinat Ovadia
Michal Oren-Shamir
Noam Alkan 

Phenylalanine induces mango fruit resistance against chilling injuries during storage at suboptimal temperature

Cold is the best means of prolonging fruit storage. However, tropical fruit are susceptible to cold storage. The mode of action of mango fruit tolerance to suboptimal cold temperature of 7 or 10 °C after postharvest application of 8 mM phenylalanine was investigated using transcriptomic and metabolomic analyses of mango fruit during suboptimal cold storage. Phenylalanine-treated fruit had less chilling injuries-black spot and pitting electrolyte leakage,-and reduced decay after suboptimal cold storage. Phenylalanine treatment induced genes related to plant-pathogen interactions, plant hormone signal transduction, and the phenylpropanoid pathway, increasing the levels of the flavonoids quercetin and kaempferol glycosides and anthocyanins, and antioxidant content. Reduced oxidation led to lower lipid peroxidation, and a reduction in fatty acid-degradation products, e.g., volatile aldehydes. Treatment with phenylalanine, therefore, enhances chilling tolerance of mango fruit through regulation of metabolic and defense-related pathways, maintaining high levels of flavonoids, and antioxidants enzyme activity, and reducing H2O2 content, lipid peroxidation, and volatile aldehydes.

Scientific Publication
You may also be interested in