Wei Zhou
Can Wang
Xiaolong Hao
Fei Chen
Qikai Huang
Tingyao Liu
Jiang Xu
Shuai Guo
Baosheng Liao
Zhixiang Liu
Yue Feng
Yao Wang
Pan Liao
Jiayu Xue
Min Shi
Itay Maoz
Guoyin Kai
Tropane alkaloids (TAs), which are anticholinergic agents, are an essential class of natural compounds, and there is a growing demand for TAs with anesthetic, analgesic, and spasmolytic effects. Anisodus acutangulus (Solanaceae) is a TA-producing plant that was used as an anesthetic in ancient China. In this study, we assembled a high-quality, chromosome-scale genome of A. acutangulus with a contig N50 of 7.4 Mb. A recent whole-genome duplication occurred in A. acutangulus after its divergence from other Solanaceae species, which resulted in the duplication of ADC1 and UGT genes involved in TA biosynthesis. The catalytic activities of H6H enzymes were determined for three Solanaceae plants. On the basis of evolution and co-expressed genes, AaWRKY11 was selected for further analyses, which revealed that its encoded transcription factor promotes TA biosynthesis by activating AaH6H1 expression. These findings provide useful insights into genome evolution related to TA biosynthesis and have potential implications for genetic manipulation of TA-producing plants.
Wei Zhou
Can Wang
Xiaolong Hao
Fei Chen
Qikai Huang
Tingyao Liu
Jiang Xu
Shuai Guo
Baosheng Liao
Zhixiang Liu
Yue Feng
Yao Wang
Pan Liao
Jiayu Xue
Min Shi
Itay Maoz
Guoyin Kai
Tropane alkaloids (TAs), which are anticholinergic agents, are an essential class of natural compounds, and there is a growing demand for TAs with anesthetic, analgesic, and spasmolytic effects. Anisodus acutangulus (Solanaceae) is a TA-producing plant that was used as an anesthetic in ancient China. In this study, we assembled a high-quality, chromosome-scale genome of A. acutangulus with a contig N50 of 7.4 Mb. A recent whole-genome duplication occurred in A. acutangulus after its divergence from other Solanaceae species, which resulted in the duplication of ADC1 and UGT genes involved in TA biosynthesis. The catalytic activities of H6H enzymes were determined for three Solanaceae plants. On the basis of evolution and co-expressed genes, AaWRKY11 was selected for further analyses, which revealed that its encoded transcription factor promotes TA biosynthesis by activating AaH6H1 expression. These findings provide useful insights into genome evolution related to TA biosynthesis and have potential implications for genetic manipulation of TA-producing plants.