A recent publication by Friedman (2023) aimed to open a discussion on the extensive reliance on the evaluated crop evapotranspiration rate for optimal irrigation recommendations. The main argument in the paper is that using estimated crop evapotranspiration to replenish the soil could either substantially over- or underestimate the optimal irrigation rate. This claim is then supported by two extreme examples: (1) extensive, low-frequency irrigation of deep-rooted crops grown in fine-textured soils during or after the rainy season where the contribution of soil water and shallow groundwater to crop water uptake is significant; and (2) intensive, high-frequency irrigation of shallow-rooted crops planted in coarse-textured soils, where deep percolation occurs. In both cases, estimates of the evapotranspiration rate as the required irrigation dose are suboptimal, and therefore, the main argument in Friedman's paper is valid.
A recent publication by Friedman (2023) aimed to open a discussion on the extensive reliance on the evaluated crop evapotranspiration rate for optimal irrigation recommendations. The main argument in the paper is that using estimated crop evapotranspiration to replenish the soil could either substantially over- or underestimate the optimal irrigation rate. This claim is then supported by two extreme examples: (1) extensive, low-frequency irrigation of deep-rooted crops grown in fine-textured soils during or after the rainy season where the contribution of soil water and shallow groundwater to crop water uptake is significant; and (2) intensive, high-frequency irrigation of shallow-rooted crops planted in coarse-textured soils, where deep percolation occurs. In both cases, estimates of the evapotranspiration rate as the required irrigation dose are suboptimal, and therefore, the main argument in Friedman's paper is valid.