נגישות
menu      
חיפוש מתקדם
Food and Function

Adi Shpaizer 
Joseph Kanner 
Oren Tirosh 

Nitrite is added to meat products as a preservative and it acts as a bacteriostatic compound against Clostridium botulinum growth. Nitric-oxide (˙NO), myoglobin and S-nitroso-compounds seem to be the main molecules generated from nitrite in meat products, which by decomposition to ˙NO, form the main anti-clostridial factor. The growth of C. sporogenes from activated spores in the presence of 0.5-2.5 mM NAC-SNO was compared to nitrite, both at 37 °C for 5 days and at room temperature for 28 days. The present study demonstrates that NAC-SNO under the same conditions and concentrations, in meat products, acts as an anti-clostridial compound similar to nitrite. In contrast to nitrite which must be activated in meat by heating, NAC-SNO generates the anti-clostridial factor directly, without heating, as was evaluated in an unheated bacteriological medium. The toxic effect of NAC-SNO and nitrite in methaemoglobinaemia and generation of N-nitrosamines in vivo, in mice, were also determined. Mice were gavage fed milk containing 45 mg per kg per bw of nitrite or an equimolar equivalent of NAC-SNO in the presence of 50 mg per kg per bw of N-methylaniline. Nitrite generated methaemoglobinaemia and carcinogenic N-nitrosoamines (N-nitrosomethylaniline); however, NAC-SNO under the same conditions and concentrations generates much less methaemoglobin and no detectable N-nitrosoamines in the blood, in vivo.

פותח על ידי קלירמאש פתרונות בע"מ -
הספר "אוצר וולקני"
אודות
תנאי שימוש
S-Nitroso- N-acetylcysteine (NAC-SNO) vs. nitrite as an anti-clostridial additive for meat products

Adi Shpaizer 
Joseph Kanner 
Oren Tirosh 

S-Nitroso- N-acetylcysteine (NAC-SNO) vs. nitrite as an anti-clostridial additive for meat products

Nitrite is added to meat products as a preservative and it acts as a bacteriostatic compound against Clostridium botulinum growth. Nitric-oxide (˙NO), myoglobin and S-nitroso-compounds seem to be the main molecules generated from nitrite in meat products, which by decomposition to ˙NO, form the main anti-clostridial factor. The growth of C. sporogenes from activated spores in the presence of 0.5-2.5 mM NAC-SNO was compared to nitrite, both at 37 °C for 5 days and at room temperature for 28 days. The present study demonstrates that NAC-SNO under the same conditions and concentrations, in meat products, acts as an anti-clostridial compound similar to nitrite. In contrast to nitrite which must be activated in meat by heating, NAC-SNO generates the anti-clostridial factor directly, without heating, as was evaluated in an unheated bacteriological medium. The toxic effect of NAC-SNO and nitrite in methaemoglobinaemia and generation of N-nitrosamines in vivo, in mice, were also determined. Mice were gavage fed milk containing 45 mg per kg per bw of nitrite or an equimolar equivalent of NAC-SNO in the presence of 50 mg per kg per bw of N-methylaniline. Nitrite generated methaemoglobinaemia and carcinogenic N-nitrosoamines (N-nitrosomethylaniline); however, NAC-SNO under the same conditions and concentrations generates much less methaemoglobin and no detectable N-nitrosoamines in the blood, in vivo.

Scientific Publication
You may also be interested in